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Definitions

What is Statistics?
The numerical facts or data in the news items ($100, 000,
4.9%) commonly are referred to as statistics. In common,
everyday usage, the term statistics refers to numerical facts or
data.

The field of statistics involves much more than simply the
computation and presentation of numerical data. In a broad
sense the subject of statistics involves the study of how data
are collected, how they are analyzed, and how they’re
interpreted. A major reason for collecting data, analyzing,
and interpreting data is to provide engineers, managers, public,
other researchers, with the information needed to make
effective decisions.

This course covers the methods that help collect the data and
analyze them.
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Definitions

Design of experiments
Statistical design of experiments refers to the process of planning
the experiment so that the appropriate data will be collected and
analyzed by statistical methods, resulting in valid and objective
conclusions.
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Introduction: Example 1

As an example of an experiment, suppose that an engineer is
interested in studying the effect of two different hardening
processes, oil quenching and saltwater quenching, on an
aluminum alloy.
The objective of the experimenter is to determine which
quenching solution (oil or saltwater) produces the maximum
hardness for this particular alloy.
The engineer decides to subject a number of alloy specimens
to each quenching solutions and measure the hardness of the
specimens after quenching. The average hardness of the
specimens treated in each quenching solution will be used to
determine which solution is best.
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Introduction: Example 1

As we consider this simple experiment, a number of important
questions come to mind:

Are these two solutions the only quenching media of potential
interest?
Are there any other factors that might affect hardness that
should be investigated or controlled in this experiment (such
as the temperature of the quenching media)?
How many coupons of alloy should be tested in each
quenching solution?
What method of data analysis should be used?
What difference in average observed hardness between the two
quenching media will be considered important?

All of these questions, and perhaps many others, will have to be
answered satisfactorily before the experiment is performed.
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Introduction

Well-designed experiments?
A well-designed experiment is crucial because the results and
conclusions that can be drawn from the experiment depend to a
large extent on the manner in which the data were collected.

To illustrate this point, suppose that the engineer in the above
experiment used specimens from one heat in the oil quench and
specimens from a second heat in the saltwater quench. Now, when
the mean hardness is compared, the engineer is unable to say how
much of the observed difference is the result of the quenching
media and how much is the result of inherent differences between
the heats.
Thus, the method of data collection has adversely affected the
conclusions that can be drawn from the experiment.
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Introduction

The objectives of the experiment may include the following:

Determining which variables are most influential on the response y

Determining where to set the influential x’s so that y is almost always
near the desired nominal value

Determining where to set the influential x’s so that variability in y is small

Determining where to set the influential x’s so that the effects of the
uncontrollable variables z1, z2, . . . , zq

Figure: General Model
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Strategy of Experimentation

Example 2: the golf experiment
Consider the golf game, some of the factors that may be important and can
influence the golf score are:

1 The type of driver (oversized or regular sized)

2 The type of ball used (balata or three piece)

3 Walking and carrying the golf curbs or riding in a golf cart

4 Drinking water or drinking something else while playing

5 Playing in the morning or in the afternoon

6 Other factors

Engineers, scientists, and business analysts often decide that some factors are
not important because of their effects that are small or have no practical value.
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Strategy of Experimentation

The best-guess approach
The best-guess approach consists of selecting an arbitrary combination of these
factors, test them and see what happens. For example, the following factors are
selected in the first round:

Oversized driver

Balata ball

Golf cart,

Water

Next, the second round:

Regular driver

Balata ball

Golf cart,

Water

This approach could be continued almost indefinitely!
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Strategy of Experimentation

The best-guess approach
This approach is often used by engineers and scientists and its
works reasonably well because the experimenters generally have a
great technical knowledge of the process they are studying.
However, there are some advantages:

suppose the initial best-guess does not produce the desired
results then the experimenter should take another guess and
this can continue for a long time
suppose the initial best-guess does produce the desired results.
Now the experimenter is tempted to stop testing although
there is no guarantee that the best solution has been found.
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Strategy of Experimentation

One-factor-at-a-time (OFAT) Approach

The OFAT method consists of selecting a starting point, or baseline
set of levels, for each factor, and then successively varying each
factor over its range with the other factors held constant at the
baseline level.
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Strategy of Experimentation

One-factor-at-a-time (OFAT) Approach

The major disadvantage of the OFAT strategy is that it fails to
consider any possible interaction between the factors.

An interaction is the failure of one factor to produce the same
effect on the response at different levels of another factor
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Strategy of Experimentation

The correct approach to dealing with several factors is to conduct a
factorial experiment. This is an experimental strategy in which
factors are varied together, instead of one at a time.

Figure: A two-factor factorial experiment
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Basic Principles

Statistical design of experiments refers to the process of
planning the experiment so that appropriate data will be
collected and analyzed by statistical methods, resulting in valid
and objective conclusions.

The three basic principles of experimental design are
randomization, replication, and blocking.
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Basic Principles

Randomization
Both the allocation of the experimental material and the order
in which the individual runs of the experiment are to be
performed are randomly determined.

Statistical methods require that the observations (or errors) be
independently distributed random variables.
Also assist in averaging out the effects of extraneous factors
that may be present.

For example, suppose that the specimens in the hardness experiment are of
slightly different thicknesses. If all the specimens subjected to the oil quench
are thicker than those subjected to the saltwater quench, we may be
introducing systematic bias into the experimental results. This bias handicaps
one of the quenching media and consequently invalidates our results. Randomly
assigning the specimens to the quenching media alleviates this problem.
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Basic Principles

Replication:
is an independent repeat run of each factor combination. In the
metallurgical experiment discussed, replication would consist of
treating a specimen by oil quenching and treating a specimen by
saltwater quenching. Thus, if five specimens are treated in each
quenching medium, we say that five replicates have been obtained.

Each of the 10 observations should be run in random order.
It allows the experimenter to obtain an estimate of the
experimental error.
If the sample mean is used to estimate the true mean response
for one of the factor levels in the experiment, replication
permits the experimenter to obtain a more precise estimate of
this parameter.
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Basic Principles

Blocking
is a design technique used to improve the precision with which
comparisons among the factors of interest are made. Often
blocking is used to reduce or eliminate the variability transmitted
from nuisance factors, that is, factors that may influence the
experimental response but in which we are not directly
interested.
For example, an experiment in a chemical process may require two batches of
raw material to make all the required runs. However, there could be differences
between the batches due to supplier-to-supplier variability, and if we are not
specifically interested in this effect, we would think of the batches of raw
material as a nuisance factor. Generally, a block is a set of relatively
homogeneous experimental conditions. In the chemical process example, each
batch of raw material would form a block, because the variability within a
batch would be expected to be smaller than the variability between batches
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Guidelines for Designing an Experiment

Recognition of and statement of the problem
(Pre-experimental)
Selection of the response variable (Planning)
Choice of factors, levels, and ranges
Choice of experimental design
Performing the experiment
Statistical analysis of the data
Conclusions and recommendations
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Basic concepts of Statistics

We briefly review the following concepts:
Hypothesis testing
Probability distributions
Sampling distributions (Normal, t, χ2,F)
Expected values and their properties
Comparing two groups (t-tests)

See lecture notes!
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An Example: Etching process

An engineer is interested in investigating the relationship
between the Radio Frequency (RF) power setting and the etch
rate for a plasma etching tool.
The objective of an experiment like this is to model the
relationship between etch rate and RF power, and to specify
the power setting that will give a desired target etch rate.
The engineer wants to test four levels of RF power: 160, 180,
200, and 220 W. She decided to test five wafers at each level
of RF power.

This is an example of a single-factor experiment with a = 4
levels of the factor (RF Power) and n = 5 replicates – this gives us
20 observations or runs.
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An Example: Etching process

Randomization
These 20 runs should be made in random order.

Suppose we use a statistical software to randomize. What this
means is that we have the 20 runs we want

160 160 160 160 160 180 180 180 180 180
200 200 200 200 200 220 220 220 220 220

and then use the software to reorder them so that we are not
performing tests in order.
As an example of randomization,

200 220 220 160 160 180 200 160 180 200
220 220 160 160 220 180 180 180 200 200
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An Example: Etching process

Why is this important?
Randomization helps account for unforeseen circumstances.
Suppose the tool has a warming up period – by randomizing, the
warm up period won’t consist of an entire level (i.e., all 5 runs of
160).
If there was a warm up period and we did not randomize, the data
(or any inferences made with it) would not be valid as it would not
control for the warm up period.
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An Example: Etching process

The following data is resulting from the engineer’s experiment

Observations
Power (W) 1 2 3 4 5 Total Average

160 575 542 530 539 570 2756 551.2
180 565 593 590 579 610 2937 587.4
200 600 651 610 637 629 3127 625.4
220 725 700 715 685 710 3535 707.0
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An Example: Etching process

We should first visualize teh data:

Both graphs indicate that etch rate increases as the power
setting increases.
There is little evidence to suggest that the variability in etch
rate around the average depends on the power setting.
Based on the graphs, we believe that (1) RF power setting
affects the etch rate and (2) higher power settings result in
increased etch rate.

24/161
Design and Analysis of Experiments



An Example: Etching process

While graphs are nice at helping us visualize the data, they do
not provide any concrete evidence that the trend we are
seeing is “legitimate."
We will need to perform a hypothesis test to determine if
there’s a difference between the levels of RF power. That is,
we want to test the equality of four means.

One possibility is to perform multiple t-tests for all (4 choose 2) six
possible pairs of means. However, this is not the best solution to
this problem.

BECAUSE
1) performing all six pairwise t-tests is inefficient. 2) conducting all
these pairwise comparisons inflates the type I error.
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Experiments with a Single Factor

The analysis of variance (ANOVA) allows us to compare more than
two means. We can actually use it to compare two means (and will
get the same result as a t-test!).
This course focuses on different ways to construct the
ANOVA to account for the different factors in a variety of
designs.
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Experiments with a Single Factor

Suppose we have a treatments (or different levels) of a single factor
that we wish to compare. The observed response from each of the
a treatments is a random variable. The data would appear as in the
table below.

Treatment
(Level) Observations Total Average

1 y11 y12 . . . y1n y1. ȳ1.
2 y21 y22 . . . y2n y2. ȳ2.
...

...
... · · ·

...
...

...
a ya1 ya2 . . . yan ya. ȳa.

i represents the factor level (or treatment)
j represents the observation (or subject) number
yij represents the j th observation taken under factor level or
treatment i . 27/161
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Experiments with a Single Factor

We have n observations under the i th treatment. Consider a model
for the data.

The means model
We can write as follows:

yij = µi + εij (1)

where
yij is the ij th observation,
µi is the mean of the i th factor level (or treatment),
εij is a random error component,
i = 1, 2, . . . , a, and j = 1, 2, . . . , n.
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Experiments with a Single Factor

The random error component represents error from “other sources"
like measurement, variability arising from uncontrolled (or
unmeasured) factors, differences between the experimental units to
which the treatments are applied, and the background noise in the
process.

Random Error εij
We have:

E [εij ] = 0 (2)

which implies the E [yij ] = µi

E [yij ] = E [µi + εij ] = µi (3)
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Experiments with a Single Factor

The effects model
Now, if we rewrite the means as follows:

µi = µ+ τi (4)

then
yij = µ+ τi + εij (5)

yij is the ij th observation,
µ is the overall mean, a parameter common to all treatments
τi is the i th treatment effect
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Experiments with a Single Factor

Remarks
This model is also called the one-way or single-factor analysis
of variance (ANOVA) model because only one factor is
investigated.
We require that the experiment should be performed in
random order so that the environment in which the
treatments are applied (often called the experimental units) is
as uniform as possible.
The experimental design is a completely randomized design.
The objective is to estimate and then test appropriate
hypotheses about the treatment means.
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Experiments with a Single Factor

Hypothesis testing
The model errors are assumed to be normally and
independently distributed random variables with mean zero
and variance σ2. εij ∼ IIDN(0, σ2)

The variance is assumed to be constant for all levels of the
factor, implying that the observations

yij ∼ N(µ+ τi , σ
2) (6)

and that the observations are mutually independent.
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Experiments with a Single Factor

The effects model yij = µ+ τi + εij can fall under two situations:

1. Fixed Effects

The a treatments could have been specifically chosen by the experimenter.

Test hypotheses about the treatment means.

Conclusions will only apply to the factor levels considered in the analysis.
We cannot extend to similar treatments that were not explicitly
considered.

2. Random Effects

The a treatments could be a random sample from a larger population of
treatments.

Extend conclusions to all treatments in the population, even if they were
not explicitly considered in our analysis.

The τi are random variables.

Test hypotheses about the variability of the τi and want to estimate this
variability.
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ANOVA - Fixed Effects Model

Notations
Recall that yi . represents the total of the observations under
the i th treatment, that is yi . =

∑n
j=1 yij

ȳi . represents the average of the observations under the i th

treatment, that is
ȳi . =

yi .
n

(7)

y.. represents the grand total of all the observations, that is

y.. =
a∑

i=1

n∑
j=1

yij (8)

ȳ.. represents the grand average of all the observations, that is

ȳ.. =
y..
N

(9)
34/161
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ANOVA - Fixed Effects Model

Hypothesis testing
Now, we are interested in testing the equality of the treatment
means. We write the hypotheses as follows:

H0 :µ1 = µ2 = . . . = µa (10)
H1 :µi 6= µj for at least one pair (i , j)

In the effects model, µi = µ+ τi . The overall mean µ =
∑a

i=1
a

implies that
∑a

i=1 τi =
∑a

i=1(µi − µ) = aµ− aµ = 0.

Equivalent Hypothesis testing
Testing the all effects are zeros. We write the hypotheses as follows:

H0 :τ1 = τ2 = . . . = τa = 0 (11)
H1 :τi 6= 0 for at least one i
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ANOVA - Fixed Effects Model

The reason we call this an analysis of variance is because we are
partitioning total variability into different components.

Decomposition of the Total Sum of Squares
The corrected total sum of squares is given by:

SST =
a∑

i=1

n∑
j=1

(yij − ȳ..)
2 (12)

The SST measures the overall variability in the data, looks like the
sample variance if divided by the appropriate degrees of freedom.

Let’s decompose the SST. See lecture notes.
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ANOVA - Fixed Effects Model

This decomposition is the fundamental ANOVA identity:

SST = SSTrt + SSE (13)

We are saying that the total variability observed in the data
can be partitioned into a sum of squares due to treatments
(i.e., this is “between" treatments) and a sum of squares due
to error (i.e., this is “within" treatments).
There are an = N observations, so SST has dfT = N − 1.
There are a levels of the factor (a means), so SSTrt has dfTrt
= a− 1.
Finally, there are n replicates within each treatment, and a
treatments, so SSE has dfE = a(n − 1) = an − a = N − a
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ANOVA - Fixed Effects Model

SSE and SSTrt
SSE is a pooled estimate of the common variance σ2 within
each of the a treatments.
If the a treatment means are equal, then SSTrt is also an
estimate of σ2.
The ANOVA identity provides us with two estimates of σ2.
The intuition: If there are no difference between the treatment
means then the SSE and SSTrt should give similar results,
otherwise we can conclude that the observed difference is
caused by the differences in the treatment means.
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ANOVA - Fixed Effects Model

SSE and SSTrt
Let’s define the mean squares as follows:

MSE =
SSE

N − a
and MSTrt =

SSTrt
a− 1

(14)

and

E [MSE] = σ2 and E [MSTrt] = σ2 +
n
∑a

i=1 τ
2
i

a− 1
(15)

Remark
Note that if the treatment means do differ, the expected value
of the treatment mean square is greater than σ2.
It seems reasonable to test the hypothesis of no difference in
Trt means by comparing MSTrt and MSE
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ANOVA - Fixed Effects Model

Statistical Analysis
The hypothesis test is as follows:

H0 :τ1 = τ2 = . . . = τa = 0 (16)
H1 :τi 6= 0 for at least one i

We assumed that εij ∼ IIDN(0, σ2) and under the null hypothesis
we have:

SSTrt/σ2 ∼ χ2a−1
SSE/σ2 ∼ χ2N−a
SST/σ2 ∼ χ2N−1

All the three sums of squares may not necessarily be independent as
SST = SSTrt + SSE!
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ANOVA - Fixed Effects Model

Cochran’s Theorem - results
Let Zi be independently distributed as N(0, 1) for i = 1, 2, . . . , v
and

v∑
i=1

Z 2
i = Q1 + Q2 + · · ·+ Qs ,

where s ≤ v and Qi has vi degrees of freedom (i = 1, 2, . . . , s).
Then Q1,Q2, · · · ,Qs are independent χ2 random variables with
v1, v2, · · · vs degrees of freedom, respectively, if and only if

v = v1 + v2 + · · ·+ vs .
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ANOVA - Fixed Effects Model

Cochran’s Theorem - results

Because dfTrt + dfE = dfT, the theorem implies that SSTrt/σ2 and
SSE/σ2 are independent χ2 random variables.

Thus, the ratio,

F0 =
SSTrt/(a− 1)

SSE/(N − a)
=

MSTrt
MSE

is distributed as an Fa−1,N−a.

This F0 is the test statistic for the hypothesis of no differences in
treatment means.
When testing this hypothesis, we have an upper-tail (i.e.,
one-tailed) rejection region and we reject if F0 > Fα,a−1,N−a.
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ANOVA TABLE - Fixed Effects Model

Let’s put all of this into what we call an ANOVA table.

Source of Sum of Degrees of Mean Test
Variation Squares Freedom Square Statistic

Between Trt. SSTrt = n
∑a

i=1(ȳi. − ȳ..)
2 dfTrt = a− 1 MSTrt F0

Error (within Trt.) SSE = SST − SSTrt dfE = N − a MSE
Total SST =

∑a
i=1
∑n

j=1(yij − ȳ..)
2 dfT = N − 1

Etch Rate Data in R.
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ANOVA - Fixed Effects Model

Estimation of the model parameters
Recall that the single-factor model is given by

yij = µ+ τi + εij (17)

Further, we have “reasonable" estimates of the overall mean and
the treatment effects are given by

µ̂ = ȳ.. and τ̂i = ȳi . − ȳ..,

and from those two, we know that the estimated treatment mean is
given by

µ̂i = µ̂+ τ̂i = ȳi .,

where i = 1, 2, . . . , a.
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ANOVA - Fixed Effects Model

Estimation of the model parameters
Let’s now discuss confidence intervals. Definition: 100(1− α)%
confidence interval for the i th treatment mean, µi(

ȳi. − tα/2,N−a

√
MSE

n
, ȳi. + tα/2,N−a

√
MSE

n

)

Definition: 100(1− α)% confidence interval for the difference between
two treatment means, µi − µj(

(ȳi. − ȳj.)− tα/2,N−a

√
2MSE

n
, (ȳi. − ȳj.) + tα/2,N−a

√
2MSE

n

)

Note that the confidence intervals defined above are considered
one-at-a-time confidence intervals.
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ANOVA - Fixed Effects Model

Simultaneous Confidence Intervals

The 1− α confidence level only applies to one particular estimate.

If we have r 100(1− α)% intervals, the probability that the r
intervals will simultaneously be correct is at least 1− rα.

Thus, we see that as the number of confidence intervals increases,
the probability that all intervals will be correct begins decreasing
(multiple testing)

If we want to calculate several confidence intervals, we should apply
a Bonferroni correction to the α to ensure we do not inflate the
experiment-wise error rate.

We do this by replacing the α/2 we use in the critical value by α/2r .

By doing this, we will construct r confidence intervals with an
overall confidence level of at least 100(1− α)%.
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ANOVA - Fixed Effects Model

Unbalanced design

In some experiments, the number of observations taken within each
treatment may be different – this is called an unbalanced design.

We must then used the modified versions of the sum of squares,

SST =
a∑

i=1

ni∑
j=1

y2
ij −

y2
..

N
, and SSTrt =

a∑
i=1

y2
i.

ni
− y2

..

N

Note that although there are methods available for the unbalanced
design, we still prefer the balanced design if we can get it because:

First, the test statistic is relatively robust to small departures
from the assumption of equal variances for the a treatments if
the sample sizes are equal.
Second, the power of the test is maximized when we have
equal sample sizes.
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ANOVA - Fixed Effects Model

Model Adequacy
Our model is yij = µ+ τi + εij and recall that εij is the term for random
error.

We assume that εij
iid∼ N(0, σ2).

If this assumption holds with the data we’re analyzing, then the
ANOVA is an exact test of the hypothesis of no difference in
treatment means.

Definition: residual for observation j in treatment i as follows

eij = yij − ŷij ,

where ŷij is the estimate of the corresponding observation yij ,

ŷij = µ̂+ τ̂i = ȳ.. + (ȳi. − ȳ..) = ȳi.

Thus, the residual tells us how far away an observation is from its
treatment mean.
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ANOVA - Fixed Effects Model

Model Adequacy

Normality Assumption

Look at Q-Q plot or histogram
Test normality: Shapiro-Wilk test
The appearance of a moderate departure from normality does
not necessarily imply a serious violation of the assumptions.
Large deviations from normality are potentially serious and
require further analysis.

Outliers: Examine the standardized residuals ∼ N(0, 1)

Residuals vs. fitted values: If the model is correct and the
assumptions are satisfied, the residuals should be “structureless."

Constant variance: examine Residuals vs. fitted values plots and
also can use test for homogeneity of variances.
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ANOVA- Model Adequacy

Shapiro-Wilk Test for Normality
Data The data consist of a random sample X1,X2,X3, ...,Xn.

Hypothesis

H0 :F (x) is normal with unspecified mean and variance
H1 :F (x) is nonnormal

Test Statistic The order statistic is given as X (1),X (2),X (3), ...,X (n)

from the smallest to the largest observation in the sample.

W =

(∑k
i=1 ai (X (n−i+1) − X (i))

)2

∑n
i=1(Xi − X )

(18)

The quantiles of W can be found in tables of the Test or using R.
Decision Reject H0 if W > W1−α
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ANOVA- Model Adequacy

Bartlett Test for Equal variances
Hypothesis

H0 :σ2
1 = σ2

2 = . . . = σ2
a

H1 :at least one is different

Test Statistic
χ2

0 = 2.3026
q

c
(19)

where q = (N − a) log10(s2p)−
∑a

i=1(ni − 1) log10(s2i ); c =

1 +
∑a

i=1(ni−1)−1−(N−a)−1

3(a−1) ; and s2p =
∑a

i=1(ni−1)s2i
N−a and s2i is

the sample variance of the i th population.

Decision Reject H0 if χ20 > χ2α,a−1

Bartlett Test assumes normality! Use Levene Test (robust) or
Fligner-Killeen Test(nonparametric). 51/161
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ANOVA- Model Adequacy

Variance-stabilizing transformation
A general class of variance-stabilizing transformations is given by
Cox-Box transformation:

fλ(X ) =

{
Xλ−1
λ if λ ≥ 0

log(X ) ifλ = 0,X > 0

In practice λ is often 0 or 0.5.
R: We can use powerTransform{car} to estimate λ.
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Multiple Comparisons Among Trt. Means

In ANOVA, we detect when there are differences between the
treatment means.

However, from ANOVA alone, we can’t determine exactly
which means differ.
There may be times where further comparisons among groups
of treatment means may be useful.
We will discuss multiple comparisons where the goal is to
compare pairs of treatment means.
When using any procedure for pairwise testing of means, we
occasionally find the overall F-test from the ANOVA is
significant, but the pairwise comparison of means fails to
reveal any significant differences. This is because F-test is
simultaneously testing all possible contrasts.

53/161
Design and Analysis of Experiments



Multiple Comparisons Among Trt. Means

Suppose that we are interested in comparing all pairs of a treatment
means and that the null hypotheses that we wish to test are
H0 : µi = µj ∀ i 6= j .

Tukey’s test

For equal sample sizes, Tukey’s test declares two means significantly
different if the absolute value of their sample differences exceeds

Tα = qα(a, dfE)

√
MSE

n
, (20)

where a is the number of sample means. When sample sizes are not
equal, we compare the absolute value of the sample differences to

Tα =
qα(a, dfE)√

2

√
MSE

(
1
ni

+
1
nj

)
(21)
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Multiple Comparisons Among Trt. Means

The Fisher Least Significant Difference (LSD) test

When we have equal group size (n1 = n2 = . . . = na = n),

LSD = tα/2,dfE

√
2MSE

n
(22)

and when we do not have equal group size,

LSD = tα/2,dfE

√
MSE

(
1
ni

+
1
nj

)
(23)

To use this procedure, we compare the observed difference between each
pair of averages to the LSD.

If |ȳi. − ȳj.| > LSD, we conclude that the population means differ.
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Multiple Comparisons Among Trt. Means

Control for experiment-wise error rate
For Tukey’s test, the overall significance level is exactly α
when the sample sizes are equal at most α when the sample
sizes are not equal.
However, The Fisher LSD method for comparing all pairs of
means controls the error rate for each individual pairwise
comparison but does not control the experiment-wise or
family error rate.
How do we know which pairwise comparison method to
use?

There is no clear answer to this – and everyone will
answer it differently.
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Multiple Comparisons Among Trt. Means

Control for experiment-wise error rate
For Tukey’s test, the overall significance level is exactly α
when the sample sizes are equal at most α when the sample
sizes are not equal.
However, The Fisher LSD method for comparing all pairs of
means controls the error rate for each individual pairwise
comparison but does not control the experiment-wise or
family error rate.
How do we know which pairwise comparison method to
use? There is no clear answer to this – and everyone will
answer it differently.
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Multiple Comparisons Among Trt. Means

Comparing Treatment Means with a Control
In many experiments, we have a control group. Sometimes we are
not interested in all pairwise comparisons, but only those that are
comparing to the control group. We will be making a− 1
comparisons. We can use Dunnett’s method here, again using the
differences between the sample means.
We reject H0 : µi = µc when

|ȳi . − ȳa.| > dα(a− 1, dfE)

√
MSE

(
1
ni

+
1
nc

)
, (24)

where the constant dα(a− 1, dfE) is given by Table VII.
We note that α is the joint significance level associated with all
a− 1 tests.
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ANOVA - Random Effects

We are often interested in a factor that has a large number of
possible levels.
If we randomly select a of the levels from the population of
factor levels, then we will say that the factor is random.
Because the levels were chosen randomly, we can make
inference about the entire population of factor levels.

Our model is
yij = µ+ τi + εij , (25)

where i = 1, 2, . . . , a and j = 1, 2, . . . , n, and both the treatment
effects (τi ) and (εij) are random variables.

We assume that τi ∼ N(0, σ2τ ) and,
εij ∼ N(0, σ2).
Also, we assume that τi and εij are independent.
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ANOVA - Random Effects Model

Because τi is independent of εij , the variance of any observation is

Var[yij ] = σ2τ + σ2 (26)

We call σ2τ and σ2 variance components and our model is
called the random effects model.
In the fixed effects model, all yij are independent.
In the random effects model, yij are only independent if they
are from different factor levels.

We can show that the covariance of any two observations is

Cov[yij , yij ′ ] = σ2τ , j 6= j ′

Cov[yij , yi ′j ′ ] = 0, i 6= i ′

Observations that do not have the same factor level have
covariance 0. Consider Example with a = 3 and n = 2 replicates.
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ANOVA - Random Model

Our basic ANOVA sum of squares identity,

SSTot = SSTrt + SSE (27)

is still valid. Testing hypotheses about individual treatment effects is no
longer meaningful because they were selected randomly.

The variance component

We are interested in testing hypotheses about the variance component,
σ2
τ .

H0 : σ2
τ = 0 (28)

H1 : σ2
τ > 0

If σ2
τ = 0, then all treatments are identical.

However, if σ2
τ > 0, we know that variability exists between

treatments.
60/161
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ANOVA - Random Model - Variance Component

Here, we want to estimate the σ2 and σ2
τ . We can show that the

expected mean squares are as follows

E[MSTrt] = σ2 + nσ2
τ (29)

E[MSE] = σ2 (30)

So, we estimate as follows:

σ̂2 = MSE (31)

σ̂2
τ =

MSTrt −MSE

n
(32)

Note that if we have unequal sample sizes, we replace n by

n0 =
1

a− 1

[
a∑

i=1

ni −
∑a

i=1 n2
i∑a

i=1 ni

]
This is called a method of moments procedure to estimate σ2 and σ2

τ .
We can also estimate using maximum likelihood.
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ANOVA - Random Model - Variance Component

Confidence Intervals
Let us now discuss confidence intervals for our variance components.
100(1− α)% CI for σ2:

(N − a)MSE

χ2
α/2,N−a

≤ σ2 ≤ (N − a)MSE

χ2
1−α/2,N−a

(33)

Note that we cannot compute an exact confidence interval for σ2
τ – we

do not have a closed-form expression for the appropriate distribution.

Instead, we can find an exact expression for a CI on the ratio

σ2
τ

σ2
τ + σ2

this ratio is called the intraclass correlation coefficient (ICC) and reflects
the proportion of the variance that is the result of differences between
treatments. 62/161
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ANOVA - Random Model - Variance Component

Confidence Intervals
100(1− α)% CI for ICC:

L

1 + L
≤ ICC ≤ U

1 + U
, (34)

where

L =
1
n

(
MSTrt
MSE

1
Fα/2,a−1,N−a

− 1
)
,

and

U =
1
n

(
MSTrt
MSE

1
F1−α/2,a−1,N−a

− 1
)
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ANOVA - Random Model

Confidence Intervals of the Overall Mean, µ
In many random effects experiments, we are interested in estimating
the overall mean µ. An unbiased estimator of the overall mean is

µ̂ = ȳ.. (35)

100(1− α)% CI for µ

ȳ.. − tα/2,a(n−1)

√
MSTrt

an
≤ µ ≤ ȳ.. + tα/2,a(n−1)

√
MSTrt

an
(36)
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ANOVA - Random Model

Estimating variance component using MLE
The method of moments to estimate the variance component has
some disadvantages:

It is a method of moments estimator – generally we do not
prefer method of moments estimators (the parameter
estimates do not have good properties).
We also note that it does not lend itself to easy confidence
interval construction (see: lack of CI for σ2τ , and we would
really like to have a CI for that).
In most software programs MLE is default.
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ANOVA - Random Model

The method of maximum likelihood

Suppose x is a random variable with probability distribution f (x , θ),
where θ is an unknown parameter. Let x1, x2, . . . , xn be a random sample
of n observations. The joint probability distribution of the sample is given
by
∏n

i=1 f (xi , θ). We can write the likelihood function as

L(x1, x2, . . . , xn; θ) =
n∏

i=1

f (xi , θ) (37)

The maximum likelihood estimator (MLE) of θ is the value of θ that
maximizes the likelihood function L(x1, x2, . . . , xn; θ). MLE’s have useful
properties:

For large samples, they are unbiased and have a normal distribution.

The inverse of the matrix of second derivatives of the likelihood
function (multiplied by -1) is the covariance matrix of the MLE’s.

This is important because it allows us to obtain CI’s on the MLE’s. 66/161
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ANOVA - Random Model

The residual maximum likelihood (REML)

REML is a variant of the MLE, known as the residual maximum
likelihood method.

It is popular because it produces unbiased estimators and like
MLE’s, it allows us to easily find CI’s.

If θ̂ is the MLE of θ and σ̂(θ̂) is its estimated standard error, then
the approximate 100(1− α)% CI on θ is as follows

θ̂ − zα/2σ̂(θ̂) ≤ θ ≤ θ̂ + zα/2σ̂(θ̂) (38)

Note that we can use this approach to find the CI for σ2
τ .

Examples with R.
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ANOVA - Single Factor

Examples with R/RStudio

Etching Experiment

Peak Discharge Data

Rental Car

Cardiovascular health and Chocolate

Fabric strength and looms

Vascular Graft Experiment
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Randomized Complete Block Design - RCBD

When analyzing data from an experiment, variability caused by a
nuisance factor can affect the results.

nuisance factor
A design factor that may have an effect on the response, but we are
not interested in that effect.

Sometimes a nuisance factor is unknown and uncontrolled.
Randomization is the design technique used to guard against
such a “lurking" nuisance factor. In other cases, the nuisance
factor is known but uncontrollable.
If we can at least observe the value that the nuisance factor
takes on at each run of the experiment, we can then adjust for
it.
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Randomized Complete Block Design - RCBD

Example - Hardness
We wish to determine whether or not four different tips produce
different readings on a hardness testing machine.

The machine operates by pressing the tip into a metal test
coupon, and from the depth of the resulting depression, the
hardness of the coupon can be determined.
The experimenter has decided to obtain four observations on
the hardness for each tip.

We would like to make the experimental error as small as possible;
that is, we would like to remove the variability between coupons
from the experimental error.
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Randomized Complete Block Design - RCBD

Example - Hardness
A design that would accomplish this requires the experimenter to
test each tip once on each of four coupons.

Test Coupon (Block)
1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1
Tip 1 Tip 4 Tip 1 Tip 4
Tip 4 Tip 2 Tip 3 Tip 2
Tip 2 Tip 1 Tip 4 Tip 3
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Randomized Complete Block Design - RCBD

Example - Hardness

This design is called a randomized complete block design (RCBD).
The word “complete" indicates that each block (coupon)
contains all the treatments (tips).
By using this design, the blocks, or coupons, form a more
homogeneous experimental unit on which to compare the tips.
This design strategy improves the accuracy of the comparisons
among tips by eliminating the variability among the coupons.

Within a block, the order in which the four tips are tested is
randomly determined.
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Randomized Complete Block Design - RCBD

Statistical Analysis
Suppose we have a treatments and b blocks.
The data resulting from the experiment can be shown as follows

Block 1 Block 2 · · · Block b

y11 y12 · · · y1b
y21 y22 · · · y2b
y31 y32 · · · y3b
...

...
...

...
ya1 ya2 · · · yab

There is one observation per treatment in each block, and the order
in which the treatments are run within each block is determined
randomly. Randomization is done within the block, and is not an
overall randomization. We can’t randomize to blocks. 73/161
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Randomized Complete Block Design - RCBD

Statistical Analysis - Model
We have an effects model,

yij = µ+ τi + βj + εij , (39)

where
i = 1, 2, . . . , a represents the treatments,
j = 1, 2, . . . , b represents the blocks,
µ is the overall mean,
τi is the treatment effect for treatment i ,
βj is the block effect for block j , and
εij is our usual N(0, σ2) random error term.

In general, we think of the treatment and block effects as deviations
from the overall mean so that

∑a
i=1 τi = and

∑b
j=1 βj = 0. 74/161
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Randomized Complete Block Design - RCBD

Statistical Analysis - ANOVA identity
The total corrected sum of squares:

SST = SSTrt + SSBlocks + SSE
a∑

i=1

b∑
j=1

(yij − ȳ..)
2 = b

a∑
i=1

(ȳi . − ȳ..)
2 + a

b∑
j=1

(ȳ.j − ȳ..)
2

+
a∑

i=1

b∑
j=1

(yij − ȳ.j − ȳi . + ȳ..)
2

Nice problem!
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Randomized Complete Block Design - RCBD

Statistical Analysis - ANOVA identity
The ANOVA table is then:

Source SS df MS F
Treatments SSTrt dfTrt MSTrt F0
Blocks SSBlocks dfBlocks MSBlocks
Error SSE dfE MSE
Total SST dfT

Example: Vascular Grafts.
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Randomized Complete Block Design - RCBD

Example - Vascular Grafts

A medical device manufacturer produces vascular grafts (artificial veins).

These grafts are produced by extruding billets of polytetrafluoroethylene
(PTFE) resin combined with a lubricant into tubes.

Some of the tubes in a production run contain defects are known as
“flicks."

The product developer responsible for the vascular grafts suspects that
the extrusion pressure affects the occurrence of flicks and therefore
intends to conduct an experiment to investigate this hypothesis.

The resin is manufactured by an external supplier and is delivered to the
medical device manufacturer in batches.

The engineer also suspects that there may be significant batch-to-batch
variation.

Therefore, the product developer decides to investigate the effect of four
different levels of extrusion pressure on flicks using a randomized
complete block design considering batches of resin as blocks.
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Randomized Complete Block Design - RCBD

Example - Vascular Grafts
The RCBD is shown in the table below.

Extrusion Batch of Resin (Block) Treatment
Pressure (PSI) 1 2 3 4 5 6 Total
8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9
8700 92.5 89.5 90.6 94.7 87.0 95.8 550.1
8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5
9100 82.5 89.5 85.6 97.4 78.9 90.7 514.6
Block Totals 350.8 359.0 364.0 362.2 341.3 377.8 2155.1

Good exercise to find the ANOVA table!
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Randomized Complete Block Design - RCBD

Additivity
The linear model we have used for the randomized block design is additive:

yij = µ+ τi + βj + εij , (40)

Suppose τ1 = 5 (treatment effect) and β1 = 2 (block effect), Then the
expected increase in both treatment 1 and block 1 (together) is

E[y11] = µ+ τ1 + β1 = µ+ 5 + 2 = µ+ 7

Although this model is useful, there are times where it’s inadequate.
Suppose we are looking at 4 formulations of a product in 6 batches of
raw material (and we consider the batches as blocks). Suppose further
that we have batch 2 affect formulation 2 such that it gives an unusually
low yield, however, batch 2 does not affect other formulations. This is an
interaction. An interaction is where the level of one factor affects the
relationship between another factor and the outcome. We should use a
factorial design – we will see this later.
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Randomized Complete Block Design - RCBD

Random Treatment and Blocks
There are situations where either treatments or blocks (or both) are random
factors. It’s common for blocks to be random. Recall that if the blocks are
random, our conclusions will be valid across all populations of blocks – not only
the ones used in our experiment. Our model is still

yij = µ+ τi + βj + εij ,

however, we now assume
βj ∼ N(0, σ2β)

where j = 1, 2, . . . , b. That is, our βj are now random variables. This model is
called a mixed model (because it contains both fixed and random factors). If
our blocks are random and the treatments are fixed, we can show that

E[yij ] = µ+ τi , i = 1, 2, . . . , a and j = 1, 2, . . . , b

Var[yij ] = σ2β + σ2

Cov[yij , yi′j′ ] = 0, i 6= i ′ and j 6= j ′

Cov[yij , yi′j ] = σ2β , i 6= i ′
80/161
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Latin Square Design

We first discussed the randomized complete block design as a design to
reduce the residual error in an experiment by removing variability due to
a known and controllable nuisance variable. There are several other
types of designs that utilize the blocking principle.

Example Rocket Propellant in R

Suppose that an experimenter is studying the effects of five different
formulations of a rocket propellant used in aircrew escape systems
on the observed burning rate.

Each formulation is mixed from a batch of raw material that is only
large enough for five formulations to be tested.

Furthermore, the formulations are prepared by several operators,
and there may be substantial differences in the skills and experience
of the operators.

Thus, it would seem that there are two nuisance factors to be
“averaged out" in the design: batches of raw material and operators.
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Latin Square Design

The appropriate design for this problem consists of testing each
formulation exactly once in each batch of raw material and for each
formulation to be prepared exactly once by each of five operators.
The resulting design, shown below, is called a Latin square design.

Raw Operators
Material 1 2 3 4 5

1 A = 24 B = 20 C = 19 D = 24 E = 24
2 B = 17 C = 24 D = 30 E = 27 A = 36
3 C = 18 D = 38 E = 26 A = 27 B = 21
4 D = 26 E = 31 A = 26 B = 23 C = 22
5 E = 22 A = 30 B = 20 C = 29 D = 31
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Latin Square Design

The Latin square design is used to eliminate two nuisance sources of
variability.

That is, it systematically allows blocking in two directions.

Thus, the rows and columns actually represent two restrictions on
randomization.

In general, a Latin square for p factors, or a p × p Latin square, is a
square containing p rows and p columns.

Each of the resulting p2 cells contains one of the p letters that
corresponds to the treatments, and each letter occurs once (and
only once) in each row and column.

83/161
Design and Analysis of Experiments



Latin Square Design

The statistical (effects) model

yijk = µ+ αi + τj + βk + εijk ,

where i = 1, 2, . . . , p corresponds to the row,
j = 1, 2, . . . , p corresponds to the treatment,
k = 1, 2, . . . , p corresponds to the column,
yijk is the observation in the i th row and kth column for the j th treatment,
µ is the overall mean, αi is the i th row effect, τj is the j th treatment effect,
βk is the kth column effect, and εijk is the random error.
The ANOVA table for the Latin Square design,

Source SS df MS F
Treatment SSTrt dfTrt MSTrt F0
Rows SSRows dfRows MSRows
Columns SSCols dfCols MSCols
Error SSE dfE MSE

Total SST dfT
84/161
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Latin Square Design with Replication

Case 1 - same levels of of the row and column blocking factors are used
in each replicate
The sum of squares are found as follows:

SST =

p∑
i=1

p∑
j=1

p∑
k=1

n∑
l=1

y2ijkl −
y2....
N

; dfT = np2 − 1

SSTrt =
1
np

p∑
j=1

y2.j.. −
y2....
N

; dfTrt = p − 1

SSRows =
1
np

p∑
i=1

y2i... −
y2....
N

; dfRows = p − 1

SSCols =
1
np

p∑
k=1

y2..k. −
y2....
N

; dfCols = p − 1

SSReps =
1
p2

n∑
l=1

y2...l −
y2....
N

; dfReps = n − 1

SSE = SST − SSTrt − SSRows − SSCols − SSReps; dfT = np2 − 1 85/161
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Latin Square Design with Replication

Case 2 - New batches of raw material but the same operators are used in
each replicate
The sum of squares are found as follows:

SST =

p∑
i=1

p∑
j=1

p∑
k=1

n∑
l=1

y2ijkl −
y2....
N

; dfT = np2 − 1

SSTrt =
1
np

p∑
j=1

y2.j.. −
y2....
N

; dfTrt = p − 1

SSRows =
1
p

n∑
l=1

p∑
i=1

y2i..l −
n∑

l=1

y2...l
p2

; dfRows = n(p − 1)

SSCols =
1
np

p∑
k=1

y2..k. −
y2....
N

; dfCols = p − 1

SSReps =
1
p2

n∑
l=1

y2...l −
y2....
N

; dfReps = n − 1

SSE = SST − SSTrt − SSRows − SSCols − SSReps; dfE = (p − 1)(np − 1) 86/161
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Latin Square Design with Replication

Case 2 - New batches of raw material and new operators are used in each
replicate
The sum of squares are found as follows:

SST =

p∑
i=1

p∑
j=1

p∑
k=1

n∑
l=1

y2ijkl −
y2....
N

; dfT = np2 − 1

SSTrt =
1
np

p∑
j=1

y2.j.. −
y2....
N

; dfTrt = p − 1

SSRows =
1
p

n∑
l=1

p∑
i=1

y2i..l −
n∑

l=1

y2...l
p2

; dfRows = n(p − 1)

SSCols =
1
p

n∑
l=1

p∑
k=1

y2..kl −
n∑

l=1

y2...l
p2

; dfCols = n(p − 1)

SSReps =
1
p2

n∑
l=1

y2...l −
y2....
N

; dfReps = n − 1

SSE = SST − SSTrt − SSRows − SSCols − SSReps; dfE = (p − 1) [n(p − 1)− 1]87/161
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The Graeco-Latin Square Design

This is an extension of the Latin Square Design.

How?
Suppose we have a p × p Latin square, and we are going to superimpose
another p × p Latin square in which we denote the treatments by Greek
letters. When superimposed properly, each Greek letter appears once
(and only once) with each Latin letter, and this is called the Graeco-Latin
square. In table form,

Column
Row 1 2 3 4
1 Aα Bβ Cγ Dδ
2 Bδ Aγ Dβ Cα
3 Cβ Dα Aδ Bγ
4 Dγ Cδ Bα Aβ

The Graeco-Latin square design can be used to control three sources of
extraneous variability (i.e., to block in three directions).
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The Graeco-Latin Square Design

Statistical Model
The statistical model for the Graeco-Latin square design is

yijkl = µ+ θi + τj + ωk + Ψl + εijkl (41)

where i = 1, 2, . . . , p corresponds to the row,
j = 1, 2, . . . , p corresponds to the Latin letter,
k = 1, 2, . . . , p corresponds to the Greek letter,
l = 1, 2, . . . , p corresponds to the column,
yijkl is the observation in row i and column l for Latin letter j and Greek
letter k ,
θi is the effect of the i th row,
τj is the effect of Latin letter treatment j ,
ωk is the effect of Greek letter treatment k ,
Ψl is the effect of column l , and
εijkl is the N(0, σ2) random error component.
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The Graeco-Latin Square Design

We have the following ANOVA table

Source SS df MS F

Treatment (Greek) SSGreek dfGreek MSGreek F0Greek
Treatment (Latin) SSLatin dfLatin MSLatin F0Latin
Rows SSRows dfRows MSRows
Columns SSCols dfCols MSCols
Error SSE dfE MSE
Total SST dfT

We note that we now compute an F for each the Greek and Latin
treatment factors, if they are of interest.
The critical value is Fα,p−1,(p−3)(p−1).
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The Graeco-Latin Square Design

We compute the sum of squares as follows:

SST =

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

y2
ijkl −

y2
....

N
; dfT = p2 − 1

SSLatin =
1
p

p∑
j=1

y2
.j.. −

y2
....

N
; dfLatin = p − 1

SSGreek =
1
p

p∑
k=1

y2
..k. −

y2
....

N
; dfGreek = p − 1

SSRows =
1
p

p∑
i=1

y2
i... −

y2
....

p2 ; dfRows = p − 1

SSCols =
1
p

p∑
l=1

y2
...l −

y2
....

N
; dfCols = p − 1

SSE = SST − SSLatin − SSGreek − SSRows − SSCols; dfE = (p − 3)(p − 1)
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Balanced Incomplete Block Design

In certain experiments using randomized block designs, we may not
be able to run all the treatment combinations in each block.

Situations like this usually occur because of shortages of
experimental apparatus or facilities or the physical size of the block.

For example, in the vascular graft experiment (Example 4.1),
suppose that each batch of material is only large enough to
accommodate testing three extrusion pressures. Therefore, each
pressure cannot be tested in each batch.

For this type of problem it is possible to use randomized block
designs in which every treatment is not present in every block.

These designs are known as randomized incomplete block designs.
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Balanced Incomplete Block Design

When all treatment comparisons are equally important, the
treatment combinations used in each block should be selected in a
balanced manner, so that any pair of treatments occur together the
same number of times as any other pair.

Thus, a balanced incomplete block design (BIBD) is an incomplete block
design in which any two treatments appear together an equal number of
times.
See Example in R: Reaction Time Experiment with 4 catalysts.
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Balanced Incomplete Block Design

Statistical Model
Consider a treatments and b blocks
Each block contains k treatments (different)
Each treatment occurs r times in the design
Each pair of treatments appears together in λ = r(k−1)

a−1 blocks
Example: a=3, b=3, k=2,r=2,λ = 1

The statistical model for the BIBD is

yij = µ+ τi + βj + εij

Extensive list of BIBDs can be found in Fisher and Yates (1963)
and Cochran and Cox (1957).
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Balanced Incomplete Block Design

ANOVA Table
We can still partition the total variability:

SSTot = SSTrt(adj) + SSBlocks + SSE

Note that the SSTrt is adjusted to separate the treatment and the block
effects.

SSTot =
∑

ij y2
ij −

y2
..

N

SSBlocks = 1
k

∑
j y2
.j −

y2
..

N

SSTrt(adj) =
k
∑

i Q
2
i

λa ; where Qi is the adjusted total for the i th

treatment and Qi = yi. − 1
k

∑
j nijy.j where nij = 1 if treatment i

appears in block j and nij = 0 otherwise.
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Balanced Incomplete Block Design

ANOVA table is put together in the usual way:

Source SS df MS F

Treatment (adjusted) SSTrt(adj) a− 1 MSTrt(adj) F0Trt(adj)
Blocks SSBlocks b − 1 MSBlocks
Error SSError N − a− b + 1 MSError
Total SSTot N − 1
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Factorial Design

Many experiments require the study of the effects of two or more
factors.

Definitions
Factorial design: In each complete trial or replicate of the
experiment all possible combinations of the levels of the
factors are investigated.
Main Effect: The change in response produced by a change
in the level of the factor.
Interaction: The difference in response between the levels of
one factor is not the same at all levels of the other factors.

97/161
Design and Analysis of Experiments



Factorial Design

The Two-Factor Factorial Design
The simplest types of factorial designs involve only two factors or
sets of treatments.

There are a levels of factor A and b levels of factor B, and
these are arranged in a factorial design
That is, each replicate of the experiment contains all ab
treatment combinations.
In general, there are n replicates.
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Factorial Design

Example: Design a battery
An engineer is designing a battery for use in a device that will
be subjected to some extreme variations in temperature.
The only design parameter that he can select at this point is
the plate material for the battery, and he has three possible
choices.
When the device is manufactured and is shipped to the field,
the engineer has no control over the temperature extremes
that the device will encounter, and he knows from experience
that temperature will probably affect the effective battery life.
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Factorial Design

Example: Design a battery
The engineer decides to test all three plate materials at three
temperature levels – 15◦F, 70◦F, and 125◦F – because these
temperature levels are consistent with the product end-use
environment.
Four batteries are tested at each combination of plate material
and temperature, and all 36 tests are run in random order.
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Factorial Design

The experiment and the resulting observed battery life data are
given in the table below.

Example: Design a battery

Material Temperature
Type 15◦F 70◦F 125◦F

1 130 155 34 40 20 70
74 180 80 85 82 58

2 150 188 136 122 25 70
159 126 106 115 58 45

3 138 110 174 120 96 104
168 160 150 139 82 60
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Factorial Design

The experiment and the resulting observed battery life data are
given in the table below.

Example: Design a battery
In this problem the engineer wants to answer the following questions:

1 What effects do material type and temperature have on the life of the
battery?

2 Is there a choice of material that would give uniformly long life regardless
of temperature?

Some remarks here:

It may be possible to find a material alternative that is not greatly
affected by temperature.

If this is so, the engineer can make the battery robust to temperature
variation in the field.

This is an example of using statistical experimental design for robust
product design, a very important engineering problem.
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Factorial Design

In general, a two-factor factorial experiment will appear as in the table
below.

Factor B
1 2 . . . b

Fa
ct
or

A

1 y111, y112 y121, y122 y1b1, y1b2
. . . , y11n . . . , y12n . . . , y1bn

2 y211, y212 y221, y222 y2b1, y2b2
. . . , y21n . . . , y22n . . . , y2bn

...

a
ya11, ya12 ya21, ya22 yab1, yab2
. . . , ya1n . . . , ya2n . . . , yabn

Where yijk is the the kth replicate for the i th level of factor A and j th level
of factor B. The order in which the abn observations are taken is selected
at random so that this design is a completely randomized design.
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Factorial Design: Statistical Model

The effects model is written as

yijk = µ+ τi + βj + (τβ)ij + εijk (42)

i = 1, 2, . . . , a,
j = 1, 2, . . . , b,
k = 1, 2, . . . , n;
µ is the overall mean effect,
τi is the effect of the i th level of the row factor A,
βj is the effect of the j th level of column factor B,
(τβ)ij is the effect of the interaction between τi βj ,
εijk is the random error component.
There are abn observations.
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Factorial Design: Hypotheses

We are looking at two factors, A and B, and they are of equal
interest.
If we are looking at row treatment effects,

H0 :τ1 = τ2 = · · · = τa = 0 (43)
H1 : at least one τi 6= 0

If we are looking at column treatment effects,

H0 :β1 = β2 = · · · = βb = 0 (44)
H1 : at least one βi 6= 0

We are also interested in the interaction,

H0 :(τβ)ij = 0 ∀i , j (45)
H1 : at least one (τβ)ij 6= 0
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Factorial Design: Notations

Let yi .. denote the total of all observations under the i th level
of factor A
y.j . denote the total of all observations under the j th level of all
observations under the j th level of factor B,
yij . denote the total of all observations in the ij th cell,
y... denote the grand total of all observations.

We define the following,

yi .. =
∑b

j=1
∑n

k=1 yijk ȳi .. = yi..
bn i = 1, 2, . . . , a

y.j . =
∑a

i=1
∑n

k=1 yijk ȳ.j . =
y.j.
an j = 1, 2, . . . , b

yij . =
∑n

k=1 yijk ȳij . =
yij.
n

i = 1, 2, . . . , a
j = 1, 2, . . . , b

y... =
∑a

i=1
∑b

j=1
∑n

k=1 yijk ȳ... = y...
abn 106/161
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Factorial Design: Sums

Now, we write our total corrected sum of squares as follows,

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)2 =
a∑

i=1

b∑
j=1

n∑
k=1

[
(ȳi.. − ȳ...) + (ȳ.j. − ȳ...) + (ȳij. − ȳi.. − ȳ.j. + ȳ...) + (yijk − ȳij.)

]2

= bn
a∑

i=1
(ȳi.. − ȳ...)2 + an

b∑
j=1

(ȳ.j. − ȳ...)2

+ n
a∑

i=1

b∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)2

+
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − ȳij.)2

SST = SSA + SSB + SSAB + SSE
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Factorial Design: ANOVA Table

SSA = bn
∑a

i=1(ȳi.. − ȳ...)2 = 1
bn

∑a
i=1 y2

i.. −
y2..
abn

SSB = an
∑b

j=1(ȳ.j. − ȳ...)2 = 1
an

∑b
j=1 y2

.j. −
y2..
abn

SSAB = n
∑a

i=1
∑b

j=1(ȳij. − ȳi.. − ȳ.j. + ȳ...)2 = 1
n

∑a
i=1
∑b

j=1 y2
ij. −

y2...
abn
− SSA − SSB

SSE =
∑a

i=1
∑b

j=1
∑n

k=1(yijk − ȳij.)2 = SST − 1
n

∑a
i=1
∑b

j=1 y2
ij. −

y2...
abn

SST = =
∑a

i=1
∑b

j=1
∑n

k=1 y2
ijk −

y2...
abn

The degrees of freedom are given as follows,

A = a − 1
B = b − 1
A×B = (a − 1)(b − 1)
Error = ab(n − 1)

Total = abn − 1
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Factorial Design: ANOVA Table

Of course we create the mean squares by dividing the sum of
squares by the appropriate degrees of freedom. This leads to the
following ANOVA table,

Source SS df MS F

A treatments SSA dfA MSA F0 = MSA
MSE

B treatments SSB dfB MSB F0 = MSB
MSE

A×B (interaction) SSAB dfAB MSAB F0 = MSAB
MSE

Error SSE dfE MSE
Total SST dfT
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Factorial Design: Example

Life (in hours) observed in the battery design
The table below presents the life (in hours) observed in the battery design example
described earlier. The row and column totals are shown in the margins of the table;
the circled numbers are the cell totals.

Temperature (◦F)

Material 15 70 125 yi..

1 130 155 539539539 24 40 229229229 20 70 230230230 99874 180 80 75 82 58

2 150 188 623623623 136 122 479479479 25 70 198198198 1300159 126 106 115 58 45

3 138 110 576576576 174 120 583583583 96 104 342342342 1501168 160 150 139 82 60

y.j. 1738 1291 770 y... = 3799
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Factorial Design: Example

ANOVA Table

Source SS df MS F p-value

Material 10,683.72 2 5,341.86 7.91 0.0020
Temperature 39,118.72 2 19,559.36 28.97 < 0.0001
Interaction 9,614.78 4 2,403.44 3.56 0.0186
Error 18,230.75 27 675.21

Total 77,646.97 35
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Factorial Design with one replicate

Sometimes we have a two-factor experiment with only one
replicate. Our effects model becomes

yij = µ+ τi + βj + (τβ)ij + εij

where i = 1, 2, . . . , a and j = 1, 2, . . . , b. Note that we just
dropped the subscript k .

Note that unless we can assume the interaction effect to be
zero, we cannot test main effects. When we can assume that
there is not an interaction effect (i.e., (τβ)ij = 0∀ i and j),
our model becomes

yij = µ+ τi + βj + εij

Note that Tukey developed an additivity test for an interaction
in the case of one replicate.
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The General Factorial Design

The results for the two-factor factorial design may be extended
to the general case where there are a levels of factor A, b
levels of factor B, c levels of factor C, and so on, arranged in a
factorial experiment.
There will be abc . . . n total observations if there are n
replicates of the complete experiment.
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The General Factorial Design: Example

A soft drink bottle
A soft drink bottler is interested in obtaining more uniform fill heights in the
bottles produced by his manufacturing process. The filling machine theoretically
fills each bottle to the correct target height, but in practice, there is variation
around this target, and the bottler would like to understand the sources of this
variability better and eventually reduce it.

The process engineer can control three variables during the filling process: the
percent carbonation (A), the operating pressure in the filler (B), and the bottles
produced per minute or the line speed (C). The pressure and speed are easy to
control, but the percent carbonation is more difficult to control during actual
manufacturing because it varies with product temperature. However, for
purposes of an experiment, the engineer can control carbonation at three levels:
10, 12, and 14 percent. She chooses two levels for pressure (25 and 30 psi) and
two levels for line speed (200 and 250 bpm).

She decides to run two replicates of a factorial design in these three factors,
with all 24 runs taken in random order. The response variable observed is the
average deviation from the target fill height observed in a production run of
bottles at each set of conditions. The data that resulted from this experiment
are shown in the table below. Note: Positive deviations are fill heights above the
target, whereas negative deviations are fill heights below the target.
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The General Factorial Design: Example

Data of the example:
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The General Factorial Design: Example

Which results in the following ANOVA table
Source SS df MS F p-value

Percentage of carbonation (A) 252.750 2 126.375 178.412 < 0.0001
Operating Pressure (B) 45.375 1 45.375 64.059 < 0.0001
Line speed (C) 22.042 1 22.042 31.118 0.0001
AB 5.250 2 2.625 3.706 0.0558
AC 0.583 2 0.292 0.412 0.6713
BC 1.042 1 1.042 1.471 0.2485
ABC 1.083 2 0.542 0.765 0.4867
Error 8.500 12 0.708

Total 336.625 23
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Blocking in a Factorial Design

We have discussed factorial designs in the context of a completely
randomized experiment.

Sometimes, it is not feasible or practical to completely randomize all
of the runs in a factorial.

Consider a factorial experiment with two factors (A and B) and n
replicates. the linear statistical model for this design is

yijk = µ+ τi + βj + (τβ)ij + εijk

Suppose that we are adding a blocking factor – a single replicate
of a complete factorial experiment is run within each block.

Now, our model becomes

yijk = µ+ τi + βj + (τβ)ij + δkδkδk + εijk ,
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Blocking in a Factorial Design

Then, we have the following ANOVA table,

Source SS df MS F

Blocks SSBlocks dfBlocks MSBlocks
A SSA dfA MSA FA
B SSB dfB MSB FB
AB SSAB dfAB MSAB FAB
Error SSE dfE MSE

Total SST dfT MST
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Blocking in a Factorial Design

The sums of squares and degrees of freedom are as follows,

Source SS df

Blocks 1
ab

∑
k y2

..k −
y2...
abn n − 1

A 1
bn

∑
i y2

i .. −
y2...
abn a− 1

B 1
an

∑
j y2
.j . −

y2...
abn b − 1

AB 1
n

∑
i

∑
j y2

ij . −
y2...
abn − SSA − SSB (a− 1)(b − 1)

Error SST - SSBlocks - SSA - SSB - SSAB (ab − 1)(n − 1)

Total
∑

i

∑
j

∑
k y2

ijk −
y2...
abn abn − 1
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Blocking in a Factorial Design: Example

Detect targets on a radar scope

An engineer is studying methods for improving the ability to detect targets on a
radar scope. Two factors she considers to be important are the amount of
background noise, or “ground clutter," on the scope and the type of filter placed
over the screen.

An experiment is designed using three levels of ground clutter and two filter
types. We will consider these as fixed-type factors. The experiment is performed
by randomly selecting a treatment combination (ground clutter level and filter
type) and then introducing a signal representing the target into the scope. The
intensity of this target is increased until the operator observes it. The intensity
level at detection is then measured as the response variable.

Because of operator availability, it is convenient to select an operator and keep
him or her at the scope until all the necessary runs have been made.
Furthermore, operators differ in their skill and ability to use the scope.
Consequently, it seems logical to use the operators as blocks. Four operators are
randomly selected. Once an operator is chosen, the order in which the six
treatment combinations are run is randomly determined.
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Blocking in a Factorial Design: Example

Detect targets on a radar scope

We have a 3×2 factorial experiment run in a randomized complete block.
The data are shown in the table below.

Operators (blocks): 1 2 3 4

Filter Type: 1 2 1 2 1 2 1 2

Ground Clutter:
Low 90 86 96 84 100 92 92 81
Medium 102 87 106 90 105 97 96 80
High 114 93 112 91 108 95 98 83
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Blocking in a Factorial Design: Example

Detect targets on a radar scope

Which leads us to the ANOVA table

Source SS df MS F p-value

Ground clutter (G) 335.58 2 167.79 15.13 0.0003
Filter type (F) 1066.67 1 1066.67 96.19 < 0.0001
GF 77.08 2 38.54 3.48 0.0573

Blocks 402.17 3 134.06
Error 166.33 15 11.09

Total 2047.83 23
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The 2k Factorial Design

Factorial designs are widely used in experiments involving
several factors where it is necessary to study the joint effect of
the factors on a response.
One of the most important of the factorial design cases is that
of k factors, each at only two levels.
These levels may be quantitative, such as two values of
temperature, pressure, or time or they may be qualitative,
such as two machines, two operators, the “high" and “low"
levels of a factor, or perhaps the presence and absence of a
factor.
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The 2k Factorial Design

A complete replicate of such a design requires
2× 2× . . .× 2 = 2k observations and is called a 2k factorial
design.
This section focuses on this class of designs. Throughout this
chapter, we assume that

the factors are fixed
the designs are completely randomized
the usual normality assumptions are satisfied
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The 2k Factorial Design

Why use 2k?

The 2k design is particularly useful in the early stages of
experimental work when many factors are likely to be
investigated.
It provides the smallest number of runs with which k factors
can be studied in a complete factorial design
Consequently, these designs are widely used in factor screening
experiments.
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The 22 Factorial Design

The 22 Design

The first design in the 2k series is one with only two factors,
say A and B, each run at two levels.
This design is called a 22 factorial design.
The levels of the factors may be arbitrarily called “low” and
“high.”
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The 22 Factorial Design

Example: Catalyst in a Chemical Process

Consider an investigation into the effect of the concentration of the
reactant and the amount of the catalyst on the conversion (yield) in a
chemical process.

The objective of the experiment was to determine if adjustments to either
of these two factors would increase the yield.

Let the reactant concentration be factor A and let the two levels of
interest be 15 and 25 percent.

The catalyst is factor B, with the high level denoting the use of 2 pounds
of the catalyst and the low level denoting the use of only 1 pound.

The experiment is replicated three times, so there are 12 runs. The order
in which the runs are made is random, so this is a completely randomized
experiment.
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The 22 Factorial Design

The data obtained are as follows:

Factor Treatment Replicate

A B Combination I II III Total

– – A low, B low 28 25 27 (1) = 80
+ – A high, B low 36 32 32 a = 100
– + A low, B high 18 19 23 b = 60
+ + A high, B high 31 30 29 ab = 90
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The 2k Factorial Design

In experiments involving 2k designs, it is always important to
examine the magnitude and direction of the factor effects
to determine which variables are likely to be important.
The ANOVA can generally be used to confirm this
interpretation.
Effect magnitude and direction should always be considered
along with the ANOVA, because the ANOVA alone does
not convey this information.
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The 2k Factorial Design

We now have a different way of writing down the treatment
combinations.

Effects
We will use the order (1), a, b, ab – this is called standard
order.
Note that (1), a, b, ab represent the total of the response
observation at all n replicates taken under that specific
treatment combination.
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The 2k Factorial Design

Effects
Let’s look at the main effect of A: The effect of A at the low level
of B is

a− (1)

n

while the effect of A at the high level of B is

ab − b

n

and averaging these two gives the main effect of A

A =
[ab − b] + [a− (1)]

2n
=

ab + a− b − (1)

2n
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The 2k Factorial Design

Effects
Now let’s look at the main effect of B: The effect of B at the low
level of A is

b − (1)

n

while the effect of B at the high level of A is

ab − a

n

and averaging these two gives the main effect of B

B =
[ab − a] + [b − (1)]

2n
=

ab − a + b − (1)

2n
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The 2k Factorial Design

The interaction effect, AB, is the average difference between the effect of A at
the high level of B and the effect of A at the low level of B,

Effects

The effect of A at the low level of B is

a− (1)

n

while the effect of A at the high level of B is

ab − b

n

and averaging the difference of two gives the interaction AB,

AB =
[ab − b]− [a− (1)]

2n
=

ab − a− b + (1)

2n

We could have looked at AB as the average difference between the effect of B
at the high level of A and the effect of B at the low level of A – we would come
up with the same equation.
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The 2k Factorial Design

Example: Catalyst in a Chemical Process
Back to our example, we estimate the average effects as

A =
ab + a− b − (1)

2n
=

90 + 100− 60− 80
2(3)

= 8.33

B =
ab − a + b − (1)

2n
=

90− 100 + 60− 80
2(3)

= −5.00

AB =
ab − a− b + (1)

2n
=

90− 100− 60 + 80
2(3)

= 1.67
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The 2k Factorial Design

Brief interpretations
The effect of A is positive – increasing A from the low level to the
high level increases the yield.

The effect of B is negative – increasing B from the low level to the
high level decreases the yield.

The interaction effect is small compared to the main effects.

When looking at 2k designs, we should examine the magnitude and
direction of factor effects. This helps us determine which variables
are important.

This should also be considered along with ANOVA – note
that ANOVA doesn’t give us this information directly!
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The 2k Factorial Design

We use contrasts (and their coefficients) to estimate the effects A, B, and AB.

The coefficients we use for the contrasts in the 22 design,

Treatment Factorial Effect

Combination I A B AB

(1) + – – +
a + + – –
b + – + –
ab + + + +

We call this orthogonal/effects coding.

So, from the table above,

A –(1) + a – b + ab
B –(1) – a + b + ab
AB +(1) – a – b + ab
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The 2k Factorial Design

Applying this to our example,

A – 80 + 100 – 60 + 90 = 50
B – 80 – 100 + 60 + 90 = –30
AB + 80 – 100 – 60 + 90 = 10

Now, we can use the contrasts to compute the sums of squares.

Source SS df

A [ab+a−b−(1)]2

4n 1
B [ab+b−a−(1)]2

4n 1
AB [ab+(1)−a−b]2

4n 1
E SST - SSA - SSB - SSAB 4(n − 1)

T
∑a

i=1
∑b

j=1
∑n

k=1 y
2
ijk −

y2
...
4n 4n − 1

where a, b, and ab represent the total of the response observations at all n
replicates taken at the treatment combination.
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The 2k Factorial Design

The Regression Model

In a 2k factorial design, we can express the results of our
experiment in terms of a regression model.

Note that we could use either an effects or a means model, but we
prefer regression models.

For our example, the model is

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

where x1 is a coded variable that represents the reactant
concentration, x2 is a coded variable that represents the amount of
catalyst, and the β’s are regression coefficients.
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The 2k Factorial Design

Note that how we calculate β depends on how x is coded!
The textbook uses effect coding. This means that one level
will be coded as –1 and the other level will be coded as +1.
The estimates of β as one-half the effect estimate.
There is also reference coding where x is coded 0, 1.

y = overallMean+EffectA/2x1+EffectB/2x2+EffectAB/2x1x2

Thus, in our example,

ŷ = 27.5 +
8.33
2

x1 −
5
2

x2
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The 2k Factorial Design

The 23 Design
Suppose now we have three factors, A, B, and C, each at two levels.

Run A B C Labels A B C

1 – – – (1) 0 0 0
2 + – – a 1 0 0
3 – + – b 0 1 0
4 + + – ab 1 1 0
5 – – + c 0 0 1
6 + – + ac 1 0 1
7 – + + bc 0 1 1
8 + + + abc 1 1 1
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The 2k Factorial Design
The average effect of A is as follows

A =
[a − (1) + ab − b + ac − c + abc − bc]

4n

The average effect of B,

B =
[b + ab + bc + abc − (1)− a − c − ac]

4n

and the average effect of C,

C =
[c + ac + bc + abc − (1)− a − b − ab]

4n

Then, the interactions are given as follows

AB =
[abc − bc + ab − b − ac + c − a + (1)]

4n

AC =
[(1)− a + b − ab − c + ac − bc + abc]

4n

BC =
[(1) + a − b − ab − c − ac + bc + abc]

4n

Finally, the three way interaction,

ABC =
[abc − bc − ac + c − ab + b + a − (1)]

4n
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The 2k Factorial Design

We can actually represent these things with a table of + and – signs.

Treatment Factorial Effect

Combination I A B AB C AC BC ABC

(1) + – – + – + + –
a + + – – – – + +
b + – + – – + – +
ab + + + + – – – –
c + – – + + – – +
ac + + – – + + – –
bc + – + – + – + –
abc + + + + + + + +
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The 2k Factorial Design

We can use the contrasts to compute the SS. In the 23 design with
n replicates, the SS for any effect is

SS =
contrast2

8n

We compute the total SS using the formula

SSTot =
∑
ijkl

y2
ijkl −

y2
....

4n

and the error SS by subtraction

SSE = SST − SSA − SSB − SSC − SSAB − SSBC − SSAC − SSABC

Following the format of the last section,

dfE = 8(n − 1)

and
dfTot = 8n − 1

where n is the number of replicates.
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The 2k Factorial Design

Example: Etch process

A 23 factorial design was used to develop a nitride etch process on a
single-wafer plasma etching tool. The design factors are the gap between the
electrodes, the gas flow, and the RF power applied to the cathode. Each factor
is run at two levels, and the design is replicated twice. The response variable is
the etch rate for silicon nitride (Å/m). The etch rate data are shown in the
table below.

Coded Factors Etch Rate

Run A B C Rep. 1 Rep. 2 Total

1 –1 –1 –1 550 604 (1) = 1154
2 1 –1 –1 669 650 a = 1319
3 –1 1 –1 633 601 b = 1234
4 1 1 –1 642 635 ab = 1277
5 –1 –1 1 1037 1052 c = 2089
6 1 –1 1 749 868 ac = 1617
7 –1 1 1 1075 1063 bc = 2138
8 1 1 1 729 860 abc = 1589

144/161
Design and Analysis of Experiments



The 2k Factorial Design

We begin by constructing the contrasts.

A – 1154 + 1319 – 1234 + 1277 – 2089 + 1617 – 2138 + 1589 = –813
B – 1154 – 1319 + 1234 + 1277 – 2089 – 1617 + 2138 + 1589 = 59
C – 1154 – 1319 – 1234 – 1277 + 2089 + 1617 + 2138 + 1589 = 2449
AB + 1154 – 1319 – 1234 + 1277 + 2089 – 1617 – 2138 + 1589 = –199
AC + 1154 – 1319 + 1234 – 1277 – 2089 + 1617 – 2138 + 1589 = –1229
BC + 1154 + 1319 – 1234 – 1277 – 2089 – 1617 + 2138 + 1589 = –17
ABC – 1154 + 1319 + 1234 – 1277 + 2089 – 1617 – 2138 + 1589 = 45

We will first use the contrasts to find the average effects by dividing by 8 (note
that the denominator is 4n and n = 2).

Then we will create our ANOVA table by converting the contrasts to sums of
squares (we will divide by 8n = 16).
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The 2k Factorial Design

First, the average effects.

A =
−813
8

= −101.625

B =
59
8

= 73.75

C =
2449
8

= 306.125

AB =
−199
8

= −24.875

AC =
−1229

8
= −153.625

BC =
−17
8

= −2.125

ABC =
45
8

= 5.625

We see that the largest effects are for power (C = 306.125), gap (A =
–101.625), and the power-gap interaction (AC = –153.625).
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The 2k Factorial Design

Moving to the ANOVA table – recall that we divide the contrasts by
8n = 8× 2 = 16 to get the sums of squares.

Source SS df MS F p

Gap (A) 41,310.56 1 41,310.56 18.34 0.0027
Gas Flow (B) 217.56 1 217.56 0.10 0.7639
Power (C) 374,850.06 1 374,850.06 166.41 0.0001
AB 2475.06 1 2475.06 1.10 0.3252
AC 94,402.56 1 94,402.56 41.91 0.0002
BC 18.06 1 18.06 0.01 0.9308
ABC 126.56 1 126.56 0.06 0.8186
Error 18,020.50 8 2252.56

Total 531,420.94 15

We note that there is no three-way interaction, but there is a two-way
interaction between gap and power.
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The 2k Factorial Design

We can estimate the regression model.

ŷ = β̂0 + β̂1x1 + β̂3x3 + β̂13x1x3

= 776.0625 +

(
−101.625

2

)
x1 +

(
306.125

2

)
x3 +

(
−153.625

2

)
x1x3
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The General 2k Factorial Design

We will now generalize the method we have been discussing to the 2k factorial
design – we now have k factors each at two levels.

The statistical model will contain the following

k main effects(
k
2

)
two-factor interactions(

k
3

)
three-factor interactions

etc.

and one k-factor interaction

Thus, the model will contain 2k − 1 effects for a 2k design.

Standard order is always introducing the factors one a time, with each new
factor combining with those that came before it. e.g., standard order for a 24

design,

(1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, and abcd
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The 2k Factorial Design

The general approach for the 2k design is as follows

1 Estimate factor effects.

2 Form initial model.

1 If the design is replicated, fit the full model.
2 If there is no replication, form the model using a normal

probability plot of the effects.
3 Perform statistical testing.

4 Refine model.

5 Analyze residuals.

6 Interpret results.

We start with the full model, then work our way backwards. All sums of
squares will have 1 degree of freedom other than the error term, which will
have 2k(n − 1) degrees of freedom, and the total sums of squares, which will
have n2k − 1 degrees of freedom.
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Blocking in the 2k Factorial Design

In many situations it is impossible to perform all of the runs in
a 2k factorial experiment under the same conditions.
As an example, we’ve discussed using batches of raw materials.
What if a single batch of raw material is not be large enough
to make all of the required runs?
As another example, a chemical engineer may run a pilot plant
experiment with several batches of raw material because he
knows that different raw material batches of different quality
grades are likely to be used in the actual full-scale process.

The design technique used in these situations is blocking.

151/161
Design and Analysis of Experiments



Blocking in the 2k Factorial Design

Blocking a Replicated 2k Factorial Design

Suppose that the 2k factorial design has been replicated n
times.
If there are n replicates, then each set of non-homogeneous
conditions defines a block, and each replicate is run in one
of the blocks.

The runs in each block (or replicate) would be made in
random order.

The analysis of the design is similar to that of any blocked factorial
experiment.
See Example of the chemical process and catalysts.
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Blocking in the 2k Factorial Design

Example of the chemical process and catalysts

Factor Treatment Replicate

A B Combination I II III Total

– – A low, B low 28 25 27 (1) = 80
+ – A high, B low 36 32 32 a = 100
– + A low, B high 18 19 23 b = 60
+ + A high, B high 31 30 29 ab = 90

The table below shows the design, where each batch of raw
material corresponds to a block.

Block 1 Block 2 Block 3
(1) = 28 (1) = 25 (1) = 27
a = 36 a = 32 a = 32
b = 18 b = 19 b = 23
ab = 31 ab = 30 ab = 29

Block Totals: B1 = 113 B2 = 106 B3 = 111
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Blocking in the 2k Factorial Design

Example of the chemical process and catalysts

The blocking ANOVA table

Source SS df MS F p-value

Blocks 6.50 2 3.25
Concentration (A) 208.33 1 208.33 50.32 < 0.0001
Catalyst (B) 75.00 1 75.00 18.12 0.0053
Interaction (AB) 8.33 1 8.33 2.01 0.2060
Error 24.84 6 4.14

Total 323.00 11

And the ignoring-the-blocking ANOVA table

Source SS df MS F p-value

Concentration (A) 208.33 1 208.33 53.19 0.0004
Catalyst (B) 75.00 1 75.00 19.15 0.0024
Interaction (AB) 8.33 1 8.33 2.13 0.1828
Error 31.33 8 3.92

Total 323.00 11
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Confounding in the 2k Factorial Design

In many problems it is impossible to perform a complete replicate of a
factorial design in one block.

Definition
Confounding is a design technique for arranging a complete factorial
experiment in blocks, where the block size is smaller than the number of
treatment combinations in one replicate.
The technique causes information about certain treatment effects
(usually high-order interactions) to be indistinguishable from, or
confounded with, blocks.

Note that even though the designs presented are incomplete block
designs because each block does not contain all the treatments or
treatment combinations, the special structure of the 2k factorial system
allows a simplified method of analysis
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Confounding in the 2k Factorial Design

Suppose that we wish to run a single replicate of the 22 design.

Each of the 22 = 4 treatment combinations requires a quantity of
raw material, for example, and each batch of raw material is only
large enough for two treatment combinations to be tested.

Thus, two batches of raw material are required.

If batches of raw material are considered as blocks, then we must
assign two of the four treatment combinations to each block.

For example:

block 1 contains (1) and ab

block 2 contains a and b

The order in which the treatment combinations are run within a block is
randomly determined. We would also randomly decide which block to run
first.
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Confounding in the 2k Factorial Design

Suppose we estimate the main effects of A and B just as if no blocking had occurred.

A =
ab + a− b − (1)

2

B =
ab + b − a− (1)

2

Note that both A and B are unaffected by blocking because in each estimate there is
one plus and one minus treatment combination from each block. That is, any
difference between block 1 and block 2 will cancel out.
If we consider the AB interaction,

AB =
ab + (1)− a− b

2

Because the two treatment combinations with the plus sign [ab and (1)] are in block 1
and the two with the minus sign (a and b) are in block 2, the block effect and the AB
interaction are identical.

That is, AB is confounded with blocks.
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Confounding in the 2k Factorial Design

Remarks
When the number of variables is small, say k = 2 or 3, it is
usually necessary to replicate the experiment to obtain an
estimate of error.
If k is moderately large, say k ≥ 4, we can frequently afford
only a single replicate. The experimenter usually assumes
higher order interactions to be negligible and combines their
sums of squares as error.
Unless experimenters have a prior estimate of error or are
willing to assume certain interactions to be negligible, they
must replicate the design to obtain an estimate of error.
In 23 design, if the ABC interaction is confounded in each
replicate then it cannot be retrieved. This design is said to
be completely confounded.
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Partial Confounding in the 2k Factorial Design

Consider the alternative. Once again, there are four replicates of the 23

design, but a different interaction has been confounded in each replicate.

ABC is confounded in replicate I,

AB is confounded in replicate II,

BC is confounded in replicate III,

and AC is confounded in replicate IV.

Then,

The information on ABC can be obtained from the data in
replicates II, III, and IV;

The information on AB can be obtained from replicates I, III, and
IV;

The information on AC can be obtained from replicates I, II, and III;

The information on BC can be obtained from replicates I, II, and IV.
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Partial Confounding in the 2k Factorial Design

We say that three-quarters information can be obtained on the
interactions because they are unconfounded in only three
replicates.
This design is said to be partially confounded.
When analyzing the partially confounded data, sums of squares
are calculated using only data from the replicates where an
interaction is unconfounded.

See Example in R.
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